1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
| # #################################################################### # HCL Description of Control for Single Cycle Y86-64 Processor SEQ # # Copyright (C) Randal E. Bryant, David R. O'Hallaron, 2010 # ####################################################################
## Your task is to implement the iaddq instruction ## The file contains a declaration of the icodes ## for iaddq (IIADDQ) ## Your job is to add the rest of the logic to make it work
#################################################################### # C Include's. Don't alter these # ####################################################################
quote '#include <stdio.h>' quote '#include "isa.h"' quote '#include "sim.h"' quote 'int sim_main(int argc, char *argv[]);' quote 'word_t gen_pc(){return 0;}' quote 'int main(int argc, char *argv[])' quote ' {plusmode=0;return sim_main(argc,argv);}'
#################################################################### # Declarations. Do not change/remove/delete any of these # ####################################################################
##### Symbolic representation of Y86-64 Instruction Codes ############# wordsig INOP 'I_NOP' wordsig IHALT 'I_HALT' wordsig IRRMOVQ 'I_RRMOVQ' wordsig IIRMOVQ 'I_IRMOVQ' wordsig IRMMOVQ 'I_RMMOVQ' wordsig IMRMOVQ 'I_MRMOVQ' wordsig IOPQ 'I_ALU' wordsig IJXX 'I_JMP' wordsig ICALL 'I_CALL' wordsig IRET 'I_RET' wordsig IPUSHQ 'I_PUSHQ' wordsig IPOPQ 'I_POPQ' # Instruction code for iaddq instruction wordsig IIADDQ 'I_IADDQ'
##### Symbolic represenations of Y86-64 function codes ##### wordsig FNONE 'F_NONE' # Default function code
##### Symbolic representation of Y86-64 Registers referenced explicitly ##### wordsig RRSP 'REG_RSP' # Stack Pointer wordsig RNONE 'REG_NONE' # Special value indicating "no register"
##### ALU Functions referenced explicitly ##### wordsig ALUADD 'A_ADD' # ALU should add its arguments
##### Possible instruction status values ##### wordsig SAOK 'STAT_AOK' # Normal execution wordsig SADR 'STAT_ADR' # Invalid memory address wordsig SINS 'STAT_INS' # Invalid instruction wordsig SHLT 'STAT_HLT' # Halt instruction encountered
##### Signals that can be referenced by control logic ####################
##### Fetch stage inputs ##### wordsig pc 'pc' # Program counter ##### Fetch stage computations ##### wordsig imem_icode 'imem_icode' # icode field from instruction memory wordsig imem_ifun 'imem_ifun' # ifun field from instruction memory wordsig icode 'icode' # Instruction control code wordsig ifun 'ifun' # Instruction function wordsig rA 'ra' # rA field from instruction wordsig rB 'rb' # rB field from instruction wordsig valC 'valc' # Constant from instruction wordsig valP 'valp' # Address of following instruction boolsig imem_error 'imem_error' # Error signal from instruction memory boolsig instr_valid 'instr_valid' # Is fetched instruction valid?
##### Decode stage computations ##### wordsig valA 'vala' # Value from register A port wordsig valB 'valb' # Value from register B port
##### Execute stage computations ##### wordsig valE 'vale' # Value computed by ALU boolsig Cnd 'cond' # Branch test
##### Memory stage computations ##### wordsig valM 'valm' # Value read from memory boolsig dmem_error 'dmem_error' # Error signal from data memory
#################################################################### # Control Signal Definitions. # ####################################################################
################ Fetch Stage ###################################
# Determine instruction code word icode = [ imem_error: INOP; 1: imem_icode; # Default: get from instruction memory ];
# Determine instruction function word ifun = [ imem_error: FNONE; 1: imem_ifun; # Default: get from instruction memory ];
bool instr_valid = icode in { INOP, IHALT, IRRMOVQ, IIRMOVQ, IRMMOVQ, IMRMOVQ, IOPQ, IJXX, ICALL, IRET, IPUSHQ, IPOPQ, IIADDQ };
# Does fetched instruction require a regid byte? bool need_regids = icode in { IRRMOVQ, IOPQ, IPUSHQ, IPOPQ, IIRMOVQ, IRMMOVQ, IMRMOVQ, IIADDQ };
# Does fetched instruction require a constant word? bool need_valC = icode in { IIRMOVQ, IRMMOVQ, IMRMOVQ, IJXX, ICALL, IIADDQ };
################ Decode Stage ###################################
## What register should be used as the A source? word srcA = [ icode in { IRRMOVQ, IRMMOVQ, IOPQ, IPUSHQ } : rA; icode in { IPOPQ, IRET } : RRSP; 1 : RNONE; # Don't need register ];
## What register should be used as the B source? word srcB = [ icode in { IOPQ, IRMMOVQ, IMRMOVQ, IIADDQ } : rB; icode in { IPUSHQ, IPOPQ, ICALL, IRET } : RRSP; 1 : RNONE; # Don't need register ];
## What register should be used as the E destination? word dstE = [ icode in { IRRMOVQ } && Cnd : rB; icode in { IIRMOVQ, IOPQ, IIADDQ} : rB; icode in { IPUSHQ, IPOPQ, ICALL, IRET } : RRSP; 1 : RNONE; # Don't write any register ];
## What register should be used as the M destination? word dstM = [ icode in { IMRMOVQ, IPOPQ } : rA; 1 : RNONE; # Don't write any register ];
################ Execute Stage ###################################
## Select input A to ALU word aluA = [ icode in { IRRMOVQ, IOPQ } : valA; icode in { IIRMOVQ, IRMMOVQ, IMRMOVQ, IIADDQ } : valC; icode in { ICALL, IPUSHQ } : -8; icode in { IRET, IPOPQ } : 8; # Other instructions don't need ALU ];
## Select input B to ALU word aluB = [ icode in { IRMMOVQ, IMRMOVQ, IOPQ, ICALL, IPUSHQ, IRET, IPOPQ, IIADDQ } : valB; icode in { IRRMOVQ, IIRMOVQ } : 0; # Other instructions don't need ALU ];
## Set the ALU function word alufun = [ icode == IOPQ : ifun; 1 : ALUADD; ];
## Should the condition codes be updated? +bool set_cc = icode in { IOPQ, IIADDQ };
################ Memory Stage ###################################
## Set read control signal bool mem_read = icode in { IMRMOVQ, IPOPQ, IRET };
## Set write control signal bool mem_write = icode in { IRMMOVQ, IPUSHQ, ICALL };
## Select memory address word mem_addr = [ icode in { IRMMOVQ, IPUSHQ, ICALL, IMRMOVQ } : valE; icode in { IPOPQ, IRET } : valA; # Other instructions don't need address ];
## Select memory input data word mem_data = [ # Value from register icode in { IRMMOVQ, IPUSHQ } : valA; # Return PC icode == ICALL : valP; # Default: Don't write anything ];
## Determine instruction status word Stat = [ imem_error || dmem_error : SADR; !instr_valid: SINS; icode == IHALT : SHLT; 1 : SAOK; ];
################ Program Counter Update ############################
## What address should instruction be fetched at
word new_pc = [ # Call. Use instruction constant icode == ICALL : valC; # Taken branch. Use instruction constant icode == IJXX && Cnd : valC; # Completion of RET instruction. Use value from stack icode == IRET : valM; # Default: Use incremented PC 1 : valP; ]; #
|